Algebraic Identities with Derivations | Important Formulas for Class 9 & 10 Students

all algebraic identities

Algebraic identities make solving maths problems easier, faster, and more accurate. They help in simplifying expressions, factorization, and solving equations in exams. These formulas are the foundation for higher classes and are very useful in competitive exams like JEE and NEET. By mastering them, students build strong logical thinking and problem-solving skills that are valuable for future studies and careers.

We Will Learn

  1. All Algebraic Identities and Their Derivations
  2. Solved Examples of Algebraic Identities
  3. MCQ Practice Questions on Algebraic Identities
.identity { font-size: 18px; margin: 20px 0; padding: 15px; border-radius: 8px; box-shadow: 0 2px 6px rgba(0,0,0,0.08); } .identity h3 { font-size: 20px; margin-bottom: 10px; color: #004080; background: #f0f8ff; /* light blue background only for identity */ display: inline-block; padding: 6px 12px; border-radius: 6px; } .derivation { text-align: center; font-size: 18px; line-height: 1.8; margin-top: 8px; } .derivation b { display: block; margin-bottom: 5px; color: #cc0000; }

1. (a + b)² = a² + 2ab + b²

Derivation: (a + b)² = (a + b)(a + b)
= a(a + b) + b(a + b)
= a² + ab + ab + b²
= a² + 2ab + b²

2. (a – b)² = a² – 2ab + b²

Derivation: (a – b)² = (a – b)(a – b)
= a(a – b) – b(a – b)
= a² – ab – ab + b²
= a² – 2ab + b²

3. (a + b)(a – b) = a² – b²

Derivation: (a + b)(a – b) = a(a – b) + b(a – b)
= a² – ab + ab – b²
= a² – b²

4. (x + a)(x + b) = x² + (a + b)x + ab

Derivation: (x + a)(x + b) = x(x + b) + a(x + b)
= x² + xb + ax + ab
= x² + (a + b)x + ab

5. (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

Derivation: (a + b + c)² = (a + b + c)(a + b + c)
= a² + b² + c² + ab + ba + bc + cb + ca + ac
= a² + b² + c² + 2ab + 2bc + 2ca

6. (x + a)³ = x³ + 3x²a + 3xa² + a³

Derivation: (x + a)³ = (x + a)(x + a)(x + a)
= (x² + 2xa + a²)(x + a)
= x³ + x²a + 2x²a + 2xa² + xa² + a³
= x³ + 3x²a + 3xa² + a³

7. (x – a)³ = x³ – 3x²a + 3xa² – a³

Derivation: (x – a)³ = (x – a)(x – a)(x – a)
= (x² – 2xa + a²)(x – a)
= x³ – 3x²a + 3xa² – a³

8. x³ + y³ = (x + y)(x² – xy + y²)

Derivation: (x + y)(x² – xy + y²) = x³ – x²y + xy² + x²y – xy² + y³
= x³ + y³

9. x³ – y³ = (x – y)(x² + xy + y²)

Derivation: (x – y)(x² + xy + y²) = x³ + x²y + xy² – x²y – xy² – y³
= x³ – y³
.example { font-size: 18px; margin: 20px 0; padding: 12px 0; border-bottom: 1px solid #eee; } .example h3 { font-size: 16px; margin: 0 0 10px 0; color: #0a3d7a; background: #e9f4ff; /* BG only for the identity/problem line */ display: inline-block; padding: 6px 12px; border-radius: 6px; } .derivation { text-align: leftr; line-height: 1.8; font-size: 14px; margin-top: 8px; } .derivation b { display: block; color: #c91919; margin-bottom: 6px; } .final { font-weight: 700; }

Example 1: Expand (2x + 3y)²

Solution: Use (a + b)² = a² + 2ab + b²
a = 2x, b = 3y
(2x + 3y)² = (2x)² + 2(2x)(3y) + (3y)²
= 4x² + 12xy + 9y²
Answer: 4x² + 12xy + 9y²

Example 2: Expand (5a − 2b)²

Solution: Use (a − b)² = a² − 2ab + b²
a = 5a, b = 2b
(5a − 2b)² = (5a)² − 2(5a)(2b) + (2b)²
= 25a² − 20ab + 4b²
Answer: 25a² − 20ab + 4b²

Example 3: Expand (3p + 4)(3p − 4)

Solution: Use (a + b)(a − b) = a² − b²
a = 3p, b = 4
(3p + 4)(3p − 4) = (3p)² − 4² = 9p² − 16
Answer: 9p² − 16

Example 4: Expand (x + 5)(x + 7)

Solution: Use (x + a)(x + b) = x² + (a + b)x + ab
a = 5, b = 7
(x + 5)(x + 7) = x² + 12x + 35
Answer: x² + 12x + 35

Example 5: Expand (x + 2y − 3z)²

Solution: Use (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
a = x, b = 2y, c = −3z
= x² + (2y)² + (−3z)² + 2(x)(2y) + 2(2y)(−3z) + 2(−3z)(x)
= x² + 4y² + 9z² + 4xy − 12yz − 6xz
Answer: x² + 4y² + 9z² + 4xy − 12yz − 6xz

Example 6: Evaluate 99² using identities

Solution: 99 = 100 − 1 → use (a − b)²
99² = 100² − 2·100·1 + 1² = 10000 − 200 + 1
= 9801
Answer: 9801

Example 7: Evaluate 51 × 49 using identities

Solution: (50 + 1)(50 − 1) = 50² − 1² (use a² − b²)
= 2500 − 1 = 2499
Answer: 2499

Example 8: Expand (2x − 3)³

Solution: Use (a − b)³ = a³ − 3a²b + 3ab² − b³
a = 2x, b = 3
(2x − 3)³ = (2x)³ − 3(2x)²(3) + 3(2x)(3)² − 3³
= 8x³ − 36x² + 54x − 27
Answer: 8x³ − 36x² + 54x − 27

Example 9: Factor x³ + 8

Solution: Use a³ + b³ = (a + b)(a² − ab + b²)
a = x, b = 2
x³ + 8 = (x + 2)(x² − 2x + 4)
Answer: (x + 2)(x² − 2x + 4)

Example 10: Factor 27y³ − 1

Solution: Use a³ − b³ = (a − b)(a² + ab + b²)
a = 3y, b = 1
27y³ − 1 = (3y − 1)\,(9y² + 3y + 1)
Answer: (3y − 1)(9y² + 3y + 1)

1. The expansion of (a+b)² is:

  • a² + b²
  • a² + 2ab + b²
  • a² – 2ab + b²
  • a² – b²
See Answer

✅ Correct Answer: B) a² + 2ab + b²

See Explanation

📘 (a+b)² = (a+b)(a+b) = a² + 2ab + b².

2. The value of (x+y)(x−y) is:

  • x² + y²
  • x² – y²
  • x² + 2xy + y²
  • x² – 2xy + y²
See Answer

✅ Correct Answer: B) x² – y²

See Explanation

📘 (x+y)(x−y) = x² – y² (difference of squares).

3. The square of 2a is:

  • 2a²
  • 4a²
  • 8a²
See Answer

✅ Correct Answer: C) 4a²

See Explanation

📘 (2a)² = 2a × 2a = 4a².

4. The expansion of (a−b)² is:

  • a² + b²
  • a² – 2ab + b²
  • a² + 2ab + b²
  • a² – b²
See Answer

✅ Correct Answer: B) a² – 2ab + b²

See Explanation

📘 (a−b)² = a² – 2ab + b².

5. The expansion of (x+3)² is:

  • x² + 6x + 9
  • x² – 6x + 9
  • x² + 3x + 9
  • x² – 3x + 9
See Answer

✅ Correct Answer: A) x² + 6x + 9

See Explanation

📘 (x+3)² = x² + 2×x×3 + 3² = x² + 6x + 9.

6. The expansion of (2x+5)² is:

  • 4x² + 20x + 25
  • 2x² + 25
  • 4x² + 5
  • x² + 10x + 25
See Answer

✅ Correct Answer: A) 4x² + 20x + 25

See Explanation

📘 (2x+5)² = 4x² + 20x + 25.

7. The cube of (a+b) is:

  • a³ + b³
  • a³ + 3a²b + 3ab² + b³
  • a³ + 3ab + b³
  • a³ – 3a²b + b³
See Answer

✅ Correct Answer: B) a³ + 3a²b + 3ab² + b³

See Explanation

📘 (a+b)³ = a³ + 3a²b + 3ab² + b³.

8. The expansion of (x−2)² is:

  • x² + 4x + 4
  • x² – 4x + 4
  • x² + 2x + 4
  • x² – 2x + 4
See Answer

✅ Correct Answer: B) x² – 4x + 4

See Explanation

📘 (x−2)² = x² – 4x + 4.

9. The value of (x+1)(x+2) is:

  • x² + 2x + 1
  • x² + 3x + 2
  • x² + x + 2
  • x² + 4x + 4
See Answer

✅ Correct Answer: B) x² + 3x + 2

See Explanation

📘 (x+1)(x+2) = x² + 3x + 2.

10. The expansion of (3x+4)² is:

  • 9x² + 24x + 16
  • 6x² + 16
  • 9x² + 12x + 16
  • x² + 7x + 16
See Answer

✅ Correct Answer: A) 9x² + 24x + 16

See Explanation

📘 (3x+4)² = 9x² + 24x + 16.

11. The expansion of (a+b+c)² is:

  • a²+b²+c²
  • a²+b²+c²+2ab+2bc+2ca
  • a²+b²+c²+ab+bc+ca
  • a²+b²+c²-2ab-2bc-2ca
See Answer

✅ Correct Answer: B) a²+b²+c²+2ab+2bc+2ca

See Explanation

📘 (a+b+c)² = a²+b²+c²+2ab+2bc+2ca.

12. The value of (x−3)(x+3) is:

  • x² – 9
  • x² + 9
  • x² – 6x + 9
  • x² + 6x + 9
See Answer

✅ Correct Answer: A) x² – 9

See Explanation

📘 (x−3)(x+3) = x² – 9.

13. The expansion of (5x−1)² is:

  • 25x² – 10x + 1
  • 25x² + 10x + 1
  • 5x² – 2x + 1
  • 25x² – 1
See Answer

✅ Correct Answer: A) 25x² – 10x + 1

See Explanation

📘 (5x−1)² = 25x² – 10x + 1.

14. The cube of (x+2) is:

  • x³ + 6x² + 12x + 8
  • x³ + 3x² + 6x + 8
  • x³ + 12x + 8
  • x³ + 2x + 8
See Answer

✅ Correct Answer: A) x³ + 6x² + 12x + 8

See Explanation

📘 (x+2)³ = x³ + 6x² + 12x + 8.

15. The expansion of (a+b)(a−b) is:

  • a²+b²
  • a²−b²
  • a²+2ab+b²
  • a²−2ab+b²
See Answer

✅ Correct Answer: B) a²−b²

See Explanation

📘 (a+b)(a−b) = a²−b².

16. The value of (2x+3)(2x−3) is:

  • 4x² – 9
  • 4x² + 9
  • 2x² – 6
  • 2x² + 9
See Answer

✅ Correct Answer: A) 4x² – 9

See Explanation

📘 (2x+3)(2x−3) = 4x² – 9.

17. The expansion of (x+4)² is:

  • x² + 4x + 16
  • x² + 8x + 16
  • x² + 2x + 16
  • x² + 16
See Answer

✅ Correct Answer: B) x² + 8x + 16

See Explanation

📘 (x+4)² = x² + 8x + 16.

18. The cube of (a−b) is:

  • a³ – 3a²b + 3ab² – b³
  • a³ + 3a²b – 3ab² + b³
  • a³ – b³
  • a³ + b³
See Answer

✅ Correct Answer: A) a³ – 3a²b + 3ab² – b³

See Explanation

📘 (a−b)³ = a³ – 3a²b + 3ab² – b³.

19. The value of (x+5)(x+2) is:

  • x² + 7x + 10
  • x² + 5x + 10
  • x² + 2x + 5
  • x² + 10
See Answer

✅ Correct Answer: A) x² + 7x + 10

See Explanation

📘 (x+5)(x+2) = x² + 7x + 10.

20. If x + y = 5 and xy = 6, what is x² + y²?

  • A) 19
  • B) 13
  • C) 25
  • D) 31
See Answer

✅ Correct Answer: A) 19

See Explanation

📘 x² + y² = (x + y)² – 2xy = 5² – 2×6 = 25 – 12 = 13.
Correction: The correct result is 13, not 19. ✅

Have a healthy education !

👉 To strengthen your learning, also check our guides on Science, Science GK, English Grammar & Spoken

Response

  1.  Avatar

    Kitna kama liye sir blogging krke mujhe bhi sikhna hai sir sikha dijiye

    Like

Leave a comment