Algebraic identities make solving maths problems easier, faster, and more accurate. They help in simplifying expressions, factorization, and solving equations in exams. These formulas are the foundation for higher classes and are very useful in competitive exams like JEE and NEET. By mastering them, students build strong logical thinking and problem-solving skills that are valuable for future studies and careers.
We Will Learn
- All Algebraic Identities and Their Derivations
- Solved Examples of Algebraic Identities
- MCQ Practice Questions on Algebraic Identities
All Algebraic Identities and Their Derivations
.identity { font-size: 18px; margin: 20px 0; padding: 15px; border-radius: 8px; box-shadow: 0 2px 6px rgba(0,0,0,0.08); } .identity h3 { font-size: 20px; margin-bottom: 10px; color: #004080; background: #f0f8ff; /* light blue background only for identity */ display: inline-block; padding: 6px 12px; border-radius: 6px; } .derivation { text-align: center; font-size: 18px; line-height: 1.8; margin-top: 8px; } .derivation b { display: block; margin-bottom: 5px; color: #cc0000; }1. (a + b)² = a² + 2ab + b²
= a(a + b) + b(a + b)
= a² + ab + ab + b²
= a² + 2ab + b²
2. (a – b)² = a² – 2ab + b²
= a(a – b) – b(a – b)
= a² – ab – ab + b²
= a² – 2ab + b²
3. (a + b)(a – b) = a² – b²
= a² – ab + ab – b²
= a² – b²
4. (x + a)(x + b) = x² + (a + b)x + ab
= x² + xb + ax + ab
= x² + (a + b)x + ab
5. (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
= a² + b² + c² + ab + ba + bc + cb + ca + ac
= a² + b² + c² + 2ab + 2bc + 2ca
6. (x + a)³ = x³ + 3x²a + 3xa² + a³
= (x² + 2xa + a²)(x + a)
= x³ + x²a + 2x²a + 2xa² + xa² + a³
= x³ + 3x²a + 3xa² + a³
7. (x – a)³ = x³ – 3x²a + 3xa² – a³
= (x² – 2xa + a²)(x – a)
= x³ – 3x²a + 3xa² – a³
8. x³ + y³ = (x + y)(x² – xy + y²)
= x³ + y³
9. x³ – y³ = (x – y)(x² + xy + y²)
= x³ – y³
Solved Examples of Algebraic Identities
.example { font-size: 18px; margin: 20px 0; padding: 12px 0; border-bottom: 1px solid #eee; } .example h3 { font-size: 16px; margin: 0 0 10px 0; color: #0a3d7a; background: #e9f4ff; /* BG only for the identity/problem line */ display: inline-block; padding: 6px 12px; border-radius: 6px; } .derivation { text-align: leftr; line-height: 1.8; font-size: 14px; margin-top: 8px; } .derivation b { display: block; color: #c91919; margin-bottom: 6px; } .final { font-weight: 700; }Example 1: Expand (2x + 3y)²
a = 2x, b = 3y
(2x + 3y)² = (2x)² + 2(2x)(3y) + (3y)²
= 4x² + 12xy + 9y²
Answer: 4x² + 12xy + 9y²
Example 2: Expand (5a − 2b)²
a = 5a, b = 2b
(5a − 2b)² = (5a)² − 2(5a)(2b) + (2b)²
= 25a² − 20ab + 4b²
Answer: 25a² − 20ab + 4b²
Example 3: Expand (3p + 4)(3p − 4)
a = 3p, b = 4
(3p + 4)(3p − 4) = (3p)² − 4² = 9p² − 16
Answer: 9p² − 16
Example 4: Expand (x + 5)(x + 7)
a = 5, b = 7
(x + 5)(x + 7) = x² + 12x + 35
Answer: x² + 12x + 35
Example 5: Expand (x + 2y − 3z)²
a = x, b = 2y, c = −3z
= x² + (2y)² + (−3z)² + 2(x)(2y) + 2(2y)(−3z) + 2(−3z)(x)
= x² + 4y² + 9z² + 4xy − 12yz − 6xz
Answer: x² + 4y² + 9z² + 4xy − 12yz − 6xz
Example 6: Evaluate 99² using identities
99² = 100² − 2·100·1 + 1² = 10000 − 200 + 1
= 9801
Answer: 9801
Example 7: Evaluate 51 × 49 using identities
= 2500 − 1 = 2499
Answer: 2499
Example 8: Expand (2x − 3)³
a = 2x, b = 3
(2x − 3)³ = (2x)³ − 3(2x)²(3) + 3(2x)(3)² − 3³
= 8x³ − 36x² + 54x − 27
Answer: 8x³ − 36x² + 54x − 27
Example 9: Factor x³ + 8
a = x, b = 2
x³ + 8 = (x + 2)(x² − 2x + 4)
Answer: (x + 2)(x² − 2x + 4)
Example 10: Factor 27y³ − 1
a = 3y, b = 1
27y³ − 1 = (3y − 1)\,(9y² + 3y + 1)
Answer: (3y − 1)(9y² + 3y + 1)
MCQ Practice Questions on Algebraic Identities
1. The expansion of (a+b)² is:
- a² + b²
- a² + 2ab + b²
- a² – 2ab + b²
- a² – b²
See Answer
✅ Correct Answer: B) a² + 2ab + b²
See Explanation
📘 (a+b)² = (a+b)(a+b) = a² + 2ab + b².
2. The value of (x+y)(x−y) is:
- x² + y²
- x² – y²
- x² + 2xy + y²
- x² – 2xy + y²
See Answer
✅ Correct Answer: B) x² – y²
See Explanation
📘 (x+y)(x−y) = x² – y² (difference of squares).
3. The square of 2a is:
- 2a²
- a²
- 4a²
- 8a²
See Answer
✅ Correct Answer: C) 4a²
See Explanation
📘 (2a)² = 2a × 2a = 4a².
4. The expansion of (a−b)² is:
- a² + b²
- a² – 2ab + b²
- a² + 2ab + b²
- a² – b²
See Answer
✅ Correct Answer: B) a² – 2ab + b²
See Explanation
📘 (a−b)² = a² – 2ab + b².
5. The expansion of (x+3)² is:
- x² + 6x + 9
- x² – 6x + 9
- x² + 3x + 9
- x² – 3x + 9
See Answer
✅ Correct Answer: A) x² + 6x + 9
See Explanation
📘 (x+3)² = x² + 2×x×3 + 3² = x² + 6x + 9.
6. The expansion of (2x+5)² is:
- 4x² + 20x + 25
- 2x² + 25
- 4x² + 5
- x² + 10x + 25
See Answer
✅ Correct Answer: A) 4x² + 20x + 25
See Explanation
📘 (2x+5)² = 4x² + 20x + 25.
7. The cube of (a+b) is:
- a³ + b³
- a³ + 3a²b + 3ab² + b³
- a³ + 3ab + b³
- a³ – 3a²b + b³
See Answer
✅ Correct Answer: B) a³ + 3a²b + 3ab² + b³
See Explanation
📘 (a+b)³ = a³ + 3a²b + 3ab² + b³.
8. The expansion of (x−2)² is:
- x² + 4x + 4
- x² – 4x + 4
- x² + 2x + 4
- x² – 2x + 4
See Answer
✅ Correct Answer: B) x² – 4x + 4
See Explanation
📘 (x−2)² = x² – 4x + 4.
9. The value of (x+1)(x+2) is:
- x² + 2x + 1
- x² + 3x + 2
- x² + x + 2
- x² + 4x + 4
See Answer
✅ Correct Answer: B) x² + 3x + 2
See Explanation
📘 (x+1)(x+2) = x² + 3x + 2.
10. The expansion of (3x+4)² is:
- 9x² + 24x + 16
- 6x² + 16
- 9x² + 12x + 16
- x² + 7x + 16
See Answer
✅ Correct Answer: A) 9x² + 24x + 16
See Explanation
📘 (3x+4)² = 9x² + 24x + 16.
11. The expansion of (a+b+c)² is:
- a²+b²+c²
- a²+b²+c²+2ab+2bc+2ca
- a²+b²+c²+ab+bc+ca
- a²+b²+c²-2ab-2bc-2ca
See Answer
✅ Correct Answer: B) a²+b²+c²+2ab+2bc+2ca
See Explanation
📘 (a+b+c)² = a²+b²+c²+2ab+2bc+2ca.
12. The value of (x−3)(x+3) is:
- x² – 9
- x² + 9
- x² – 6x + 9
- x² + 6x + 9
See Answer
✅ Correct Answer: A) x² – 9
See Explanation
📘 (x−3)(x+3) = x² – 9.
13. The expansion of (5x−1)² is:
- 25x² – 10x + 1
- 25x² + 10x + 1
- 5x² – 2x + 1
- 25x² – 1
See Answer
✅ Correct Answer: A) 25x² – 10x + 1
See Explanation
📘 (5x−1)² = 25x² – 10x + 1.
14. The cube of (x+2) is:
- x³ + 6x² + 12x + 8
- x³ + 3x² + 6x + 8
- x³ + 12x + 8
- x³ + 2x + 8
See Answer
✅ Correct Answer: A) x³ + 6x² + 12x + 8
See Explanation
📘 (x+2)³ = x³ + 6x² + 12x + 8.
15. The expansion of (a+b)(a−b) is:
- a²+b²
- a²−b²
- a²+2ab+b²
- a²−2ab+b²
See Answer
✅ Correct Answer: B) a²−b²
See Explanation
📘 (a+b)(a−b) = a²−b².
16. The value of (2x+3)(2x−3) is:
- 4x² – 9
- 4x² + 9
- 2x² – 6
- 2x² + 9
See Answer
✅ Correct Answer: A) 4x² – 9
See Explanation
📘 (2x+3)(2x−3) = 4x² – 9.
17. The expansion of (x+4)² is:
- x² + 4x + 16
- x² + 8x + 16
- x² + 2x + 16
- x² + 16
See Answer
✅ Correct Answer: B) x² + 8x + 16
See Explanation
📘 (x+4)² = x² + 8x + 16.
18. The cube of (a−b) is:
- a³ – 3a²b + 3ab² – b³
- a³ + 3a²b – 3ab² + b³
- a³ – b³
- a³ + b³
See Answer
✅ Correct Answer: A) a³ – 3a²b + 3ab² – b³
See Explanation
📘 (a−b)³ = a³ – 3a²b + 3ab² – b³.
19. The value of (x+5)(x+2) is:
- x² + 7x + 10
- x² + 5x + 10
- x² + 2x + 5
- x² + 10
See Answer
✅ Correct Answer: A) x² + 7x + 10
See Explanation
📘 (x+5)(x+2) = x² + 7x + 10.
20. If x + y = 5 and xy = 6, what is x² + y²?
- A) 19
- B) 13
- C) 25
- D) 31
See Answer
✅ Correct Answer: A) 19
See Explanation
📘 x² + y² = (x + y)² – 2xy = 5² – 2×6 = 25 – 12 = 13.
Correction: The correct result is 13, not 19. ✅
Have a healthy education !
👉 To strengthen your learning, also check our guides on Science, Science GK, English Grammar & Spoken


Leave a comment